NEW INVAR TUNING ELEMENTS WITH SELF-LOCKING SYSTEM

Exxelia announces the release of new world-unique invar tuning elements featuring a self-locking system. The product has been designed to respond to increasing demand for high frequency tuning elements for space applications.


Working frequencies in Space applications are shifting to Ka, Ku or even Q band, while cavity filters are undergoing the general trend towards miniaturization: this context calls for a much more precise and stable tuning element now offered by Exxelia Temex, daughter company of Exxelia, through their last innovative and unrivalled solution to incorporate a self-locking system into their Invar Tuning Elements.
Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed.

Published on 07 Nov 2016 by Marion Van de Graaf

Revolutionary Exxelia MML™ Ultra-High Energy Density Film Capacitors

Discover the power of MML™ technology The best performing film capacitors on the market with the highest energy density ever! Exxelia&#39;s revolutionary MML™ ultra-high energy density Film Capacitors are a game changer in the industry due to their unparalleled energy density of 400 J/dm3. This allows for a significant reduction in size and weight in comparison to traditional Polypropylene or Polyester dielectrics, as well as an increased operating temperature of up to 140°C and protection against transient voltage. Not only do MML™ capacitors offer a large flexibility in design, allowing for low profile configurations, but they have also been tested in actual cases for controls and DC-Links functions in aircraft applications and have shown a reduction in size and weight of about 50% compared to other film technologies.   Furthermore, when compared to MLCCs, MML™ capacitors have demonstrated a reduction in weight of between 70% to 90%, with no capacitance derating with voltage applied and a low drift of less than 5% across the temperature range. Applications that previously required clusters of stacked MLCCs can now be replaced by a single MML™ unit of similar size, with the added reliability that film dielectric offers. The exceptional properties of Exxelia&#39;s new MML™ capacitors make them suitable for a wide range of applications including power supplies, DC-links, AC/DC/AC power converters, charge/discharge or power generation functions of commercial/military aircraft, satellite platforms and payloads, launchers, defibrillators, downhole tools and any other applications that require confined electronics. Samples are available upon request.   Features & Benefits : Miniaturization of the function : Up to 50% size reduction vs other film technologies ; matching footprint with stacked MLCC Lightweight : 50% lighter vs other film technologies ; 80 to 90% lighter than ceramic No capacitance derating in voltage, stable in temperature (<5% drift through the temperature range) Capacitance from 1μF to 1000μF  Voltages from 50V to 1000V  Operating Temperature -55 °C to +140 °C Highly customizable   Get your white paper around our MML Film Capacitor Download our white paper now on our innovative Miniature Micro-Layer™ (MML™) technology, which offers the highest capacitance per volume for film capacitors available on the market, by filling out the form below.   Chargement&hellip;

Exxelia at Eurosatory

State-of-the art absolute optical encoders Exxelia has acquired deep expertise in the development of contactless position sensors of several type: absolute and incremental optical encoders, magnetic technology and inductive sensors. Several ranges of state-of-the-art absolute optical encoders will be showcased at the company booth - Hall 5A booth# E543. Absolute optical encoders are position sensors that use optical signals to identify an absolute angular position. They provide the highest resolution, operating speed reliability as well as long life operation in most demanding environments. Exxelia ranges of absolute optical encoders offer very high performance levels for a very small footprint: high precision (<30arcsc.), high resolution (up to 21 bits), extreme thinness (10mm) and EMI EMC compatibility. With their compact design, Exxelia miniature encoders meet the requirements of the most demanding application such as aerospace, defense, medical, oil & mining industries. Various protocols are available to match with any application.  Exxelia encoders can be easily combined with other functions such as slip rings to provide customers turkey solutions.   Two new ranges of MIL-qualified wet tantalum capacitors: MIL39006/22 & MIL39006/25 The recently introduced ranges of MIL-qualified tantalum capacitors will be showcased on the company booth. MIL 39006/22 and MIL 39006/25 respectively equivalent to CLR79 and CLR81 types featuring hermetically sealed cylindrical tantalum cases and axial leads are available in T1, T2 T3 and T4 cases with extended capacitance and voltage ratings. MIL 39006/22 is qualified for voltages from 6V to 125V and provides from 1200µF @6V to 56µF @125V. MIL 39006/25 is qualified for voltages from 25V to 125V and delivers from 680µF @25V to 82µF @125V. Both ranges combine high energy density with a large operating temperature range of -55°C - +125°C and H vibrations and shocks resistance.