Countering Threats from Transients in Magnetics

In the realm of electrical engineering, transients in magnetic components pose significant challenges that can lead to system failures. Understanding and mitigating these threats is crucial for ensuring the reliability and longevity of electrical systems. This article delves into the origins of elec...


Understanding Electrical Transients in Magnetics

Electrical transients are sudden, short-duration spikes in voltage or current. They can arise from various sources such as lightning strikes, switching operations, or inherent instabilities within the system. These transients can cause severe stress on magnetic components, leading to potential malfunctions or catastrophic failures.

 

Causes of Electrical Transients

Electrical transients can originate from external factors like environmental conditions or input/output operations. Internally, they can be caused by the natural response of the system's reactive components: resistors, inductors, and capacitors. These components, governed by the laws of physics, react to changes in state variables, resulting in oscillations, amplification, or decay of signals.

 

Effects on Magnetic Components

Magnetic components, such as transformers and inductors, are particularly susceptible to transients. For instance, transformers can exhibit parasitic components that affect their response to sudden voltage or current changes. These parasitic elements can cause amplification, oscillation, or even breakdown under transient conditions.

 

Mitigating Transient Threats

Effective mitigation of transient threats involves understanding the behavior of magnetic components under dynamic conditions and implementing design strategies to counteract these effects.

 

Component Functions and Response

  1. Resistors: Dissipate energy to manage power levels.
  2. Inductors: Generate opposing voltages to slow current changes.
  3. Capacitors: Absorb or release charge to stabilize voltage changes.

The induced voltage and current in inductors and capacitors are inversely proportional to the circuit's time constant. A smaller time constant means faster energy transfer, which can lead to higher transient voltages or currents.

 

Transformer Design Considerations

Transformers must be designed to handle dynamic impedance transformations and provide necessary isolation. Realistic transformer models must account for parasitic components, which can significantly influence their behavior during transients. High voltage transformers, for instance, are prone to series resonance due to leakage inductance and self-capacitance, leading to oscillations and potential saturation.

 

Practical Mitigation Techniques

  1. High Bandwidth Instruments: Use to detect latent transient amplification and persistent ringing during normal operations.
  2. Worst Case Analysis: Evaluate bias currents and flux density for worst-case scenarios, including maximum voltage and temperature conditions.
  3. Current Transformer Verification: Ensure that protection circuits can detect transient overcurrents despite reduced output due to saturation.
  4. Residual Magnetization Control: Verify that residual magnetization does not impair operation, ensuring sufficient headroom for magnetization.
  5. Design of Experiments (DOEs), Risk Reduction Tests (RRTs), and Accelerated Stress Tests (ASTs): Implement these throughout the design stages to mitigate risks effectively.
  6. Protective Components: Use components like MOVs (Metal Oxide Varistors) to safeguard circuits from lightning-induced transients.

 

Countering threats from transients in magnetics requires a thorough understanding of the underlying causes and the implementation of robust design strategies. By employing high bandwidth detection instruments, performing worst-case analyses, and integrating protective measures, engineers can significantly reduce the risk of transient-induced failures in magnetic components. Adopting a proactive approach to design and testing ensures the resilience and reliability of electrical systems in the face of transient threats.

Published on 22 May 2020 by Victor W. Quinn / Stéphane PERES

Discover our high-performance power film capacitors

Unraveling the FP 20-400-SP The FP 20-400-SP is a film capacitor that is designed to excel in high-power applications. Here's what sets this capacitor apart:   1. High Power Density: The FP 20-400-SP boasts an extraordinary power density, making it an ideal choice for applications where power is of the essence. Its ability to handle high levels of power without compromising on performance is a testament to Exxelia's commitment to excellence. Very high current (up to 800A) Operating frequency up to 1000 KHz Capacitance : 0.10 µF - 2.5 µF Voltage : 500 VRMS - 1 000 VRMS Frequency : 106 kHz - 637 kHz Max Power : 400 KVAR   2. Robust Construction: Exxelia's engineering prowess is evident in the robust construction of the FP 20-400-SP. It is built to withstand the rigors of demanding environments, ensuring reliability in critical applications. 3. Wide Temperature Range: this film capacitor operates flawlessly across a broad temperature range (Up to 85 °C with a copper casing to improve temperature management), making it suitable for various industries, including aerospace, defense and renewable energy, where extreme conditions are the norm. Thanks to an innovative process, we're able to keep the capacitor very dense while maintaining very good electrical characteristics (such as current), and this without impairing the heating of the part.   Applications : In demanding power electronic circuits, this capacitor is a trusted component for smooth operation in Induction heating, electric Cars, medical Imaging, EV Wireless Chargers, resonant Circuits and industrial induction welding.    For more information about this remarkable power film capacitor, visit Exxelia's FP 20-400-SP product page, and also all the Power Film capacitors Exxelia Alcon family.     

Exxelia at IMS

Ultra low ESR, high RF power and high self-resonant frequency The NHB series is a complete range of MLCC based on NPO dielectric material providing a very high Self Resonant Frequency and limiting the parasite Parallel Resonant Frequencies. The series is available in 1111 size with capacitance ranging from 0. 3pF to 100pF. NHB series offers excellent performance for RF power applications at high temperature up to 175°C and at 500 VDC. The lowest ESR is obtained by combining highly conductive metal electrodes and proprietary of new NPO low loss rugged dielectrics. NHB series particularly fits for high power and high frequency applications such as: cellular base station equipment, broadband wireless service, point to point / multipoint radios and broadcasting equipment. Typical circuit applications: impedance matching, bypass, feedback, tuning, coupling and DC blocking. 100% invar tuning screws with self-locking system   Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed. High Q Factor Dielectric Resonators in large batches Dielectric resonators are designed to replace resonant cavities in microwave functions such as filters and oscillators. Exxelia with the support of ESA and CNES developed the E7000 series that provides a narrow bandwidth with smaller size. E7000 is Ba-Mg-Ta materials based that combines an ultra-high Q-factor and the possibility to get all the temperature coefficients upon request. E7000 features the high-performance requested for space use in the frequency range from 5 to 32 GHz, and guarantees up to Qxf > 250 000 at 10GHZ. Being one of the few manufacturers producing its own raw materials, Exxelia perfectly masters the production of dielectric resonators. Induced by the success of this new range, the company is now able to provide larger batches (up to 20kg of powder) of its E7000 series while keeping the exact same product properties, resulting in opportunities for cost-effective volume fabrication.